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Abstract

The phase boundary between the liquid matter of the interior of a neutron star and the solid

matter that comprises the crest is studied. The matter is assumed to consist of elecmms and

non-relativistic neutrons and protons in beta equilibrium. The characteristic used to identify the

phase boundary is the onset of instability of the uniform matter against proton clustering, and

it is examined for lbur interactions either used previously in astrophysical studies - Skyrme 1',

SkM and FPS - or proposed here as an improvement - FPS21. The relationship of this important

property of neutron-star matter to the neutron-matter character of each interaction is explored.

Characteristic densities associated with proton drip and with the liquid-gas boundary of one- and

two-lluid models of the matter are compared with the instability density. Properties of some other

effective interactions, relativistic and non-relativistic, are compared with those of the interactions

discussed. The desirability of more calculations of neutron-matter properties, and of the utilization

of those that do exist when formulating dense-matter equations of state, is emphasized. For the

improved interaction FPS21, the crust fraction of the moment of inertia of a neutron star is
esti mated.

1. Introduction

The crust of a neutron star is important for a number of observable properties of

the star. For example, neutrino emission from the crust could play an important role

in the thermal evolution of the star if neutrino emission from the core was suppressed

by supcrfluidity. Also in models of glitches that invoke coupling between the superfluid

in the crust of a neutron star and a solid crust, the moments of inertia of the various
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components of matter in the crust play a crucial role (sec for example Ref. [ I ]). In

determining the crustal properties the inner part of the crust close to the transition to the

uniform matter in the core is of utmost importance, since because of the large density

gradient it is this region where most of the crustal matter resides. This indicates the

need to understand well the crust-core transition region.

In the past there have been many studies of the nuclei in neutron-star crusts, and the

transition to the uniform phase [2-6]. The earliest works [2,3] were based on the use

of the semiempirical mass formula to estimate the masses of the nuclei, together with

an expression for the energy of the neutron gas outside nuclei calculated from many-

body theory and the neutron-neutron interaction. These led to rather low densities for

the transition between the nuclear phase and the uniform one. In the case of Ref. [2],

which employed the Levinger-Simmons interaction [7], the density was about 0.3 times

the nuclear density, or just above 5 x 1013 g.cm -3. The work of Bethe et al. [3], which

employed Nemeth and Sprung's [8] calculations of the energy of neutron matter from

Brueckner-Bethe theory and the Reid interaction, gave a slightly smaller density, but,

as mentioned in the "Note added in proof" [3], there were indications that if improved

calculations of the neutron gas energy density were used, the transition density would

be higher. In both these works the transition was found to be relatively sharp.

One of the major differences between the work of Ref. [4] and the previous ones

was that the energy of nuclear matter in nuclei and the energy of the neutron matter

outside were evaluated from one and the same expression for the energy density as a

function of neutron and proton densities, a feature also built into the work of Refs. [5,6].

In Ref. [4], the transition density was found to be close to the saturation density of

symmetric nuclear matter, n_ = 2.7 x 10 TM g.cm -3, while in Refs. [5,6] it was about

1.5 X 10 TM g-cm -3, or just over half the saturation density. We note that Arponen [5]

stressed the importance for the transition density of the detailed form of the energy

density of nuclear matter at low proton concentrations, and pointed to the differences

between his results, which were based on theoretical expressions for the energy based on

analytic lbrms of the nucleon-nucleon G-matrix, and those of BBP [4], which employed

an interpolation formula fitted to theoretical results for pure neutron matter and empirical

properties of nuclei close to the valley of beta stability. Another difference between the

results of Refs. [2,3] and those of Refs. [4-6] is that in the latter group, the transition

was found to be relatively smooth. This was in part due to the consistent treatment of

matter inside and outside nuclei, and partly to the allowance for the reduction in dense

neutron-rich matter of nuclear surface and Coulomb energies.

The most recent development is the discovery [9,10] that in a large fraction of

the crustal matter, nuclei may be rod-like or plate-like, rather than roughly round, as

they are in the laboratory. In most cases the boundary between crustal matter and the

uniform phase has been determined by comparing energies of the two phases. Such

calculations are complicated, partly because of the many equilibrium conditions that

must be satisfied, and partly because one requires reliable estimates for the energy of an

interface between nuclear matter and neutron matter in equilibrium. For nuclear matter

with proton concentrations as low as those encountered in nuclei near the boundary with
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the uniform phase, _ 10% or less, the interfacial energy is very small, and thus great

care is needed in estimating it.

In this paper we adopt two other approaches to estimating the location of the boundary

between crust and core. We consider starting in the uniform matter in the core and

reducing the density until matter becomes unstable to formation of a small periodic

density modulation. This has previously been done in Refs. [4,11]. Were the transition

a second-order one, this calculation would give the density of the transition. However, on

general grounds, the transition must be a first-order one, and consequently some phase

with a tinite-amplitude density modulation will become energetically favorable compared

with the uniform phase at a higher density than that at which the second-order phase

transition would have occurred. Thus the density at which the second-order transition

would occur gives a lower bound on the density at which the crust-core transition

actually occurs. Since the crust-core transition is weakly first order, this lower bound is

in fact rather close to the actual transition density, as our calculations will confirm.

The second approach is to study the phase equilibria between different sorts of

nuclear and neutron matter in bulk, neglecting Coulomb and surface effects. This will

underestimate the energy of inhomogeneous phases, and will therefore give an upper

limit to the maximum density at which inhomogeneous phases are energetically preferred

relative to the uniform phase.

This paper is organized as follows: Section 2 describes the basic formalism tbr

examining the instability to proton clustering, and in Section 3 we give instability
results for the FPS21 interaction. In Section 4 we introduce and contrast the four

nuclear interactions of which we make a detailed study. In Section 5 we compare their

instability predictions, and explore what particular aspects of the nuclear interaction are

important tbr determining the crust-core transition. We emphasize their neutron-matter

predictions, in comparison with ab initio calculations of that quantity. The comparison

of instability density and the densities of the actual first-order phase transition between

spherical bubbles and uniform matter is made in Section 6 for the FPS interaction.

Section 7 discusses the two-bulk-fluid to one-fluid phase transition, the onset of proton

drip that is its precursor, and their relationship to the instability density. In Section 8 a

wider comparison is attempted, with some very recent ab initio calculations, and with

some popular relativistic and non-relativistic effective-interaction models. It is concluded

that the energy of neutron matter in the density range of interest (< 0.1 fm -3) is a

rather well established property, although few effective interactions make a good fit to

it. We also explore the behavior of the neutron single-particle potential dictated by the

requirement that at low density the interaction energy is directly related to the neutron-

neutron scattering length. This produces characteristics that are mimicked by the FPS21

interaction. The resulting single-particle potential is roughly independent of density for

a range of densities, and this could have consequences for calculations of halo nuclei.

In the conclusion the instability results for FPS21 are summarized and related to the

neutron-star moment of inertia crust fraction. An appendix gives algebraic results for

the Skyrme and generalized Skyrmc interactions.
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2. Basic formalism

We begin by calculating the energy change when small sinusoidal variations of the

particle densities are imposed on a unilbrm liquid of prolons, neutrons and electrons.

To second order in the density modulations, _n_, the energy density may be written as

1 62E

E- Eu = _ Z Z. 6ni(q)6n2(q) *_ni(q)(_ni(q)*' (1)
q r,/

where Eu is the energy of the uniform phase, and the subscripts i and j denote the

particle species. The first-order terms in the expansion vanish because there is no net

change in the number of particles of any species. The matrix has the form

( 4 e2/OlZ_P + Dppq- + + DP nq2 q2Onp q2 3nn

__ c)p.,_2E = c?/_tp+ Dpnq 2 -- + Dnnq z 0 .
6hi (q) 6nj (q) * Ottn c)nn

4rre 2 O#e 47re 2
q2 0 One ÷ Deeq2 + T

(2)

Here 47"re2/q 2 is the Coulomb interaction, and the coefficients Di/ determine the terms

in the energy functional proportional to gradients of the particle densities. Note that

D_j = 2Bi/ in the notation of Ref. 14].

For the system to be stable to small density modulations, all eigenvalues of the

matrix must be positive. A necessary and sufficient condition that a hermitian matrix

has positive eigenvalucs [ 121 is that a number of minors of the determinant be positive:

all (112 "'" al,f

g/ll />(), all a12 _0, ... a21 a22 "'" a2,, _(). (3)
(/21 ag-_ ............

ant an2 ... (Inl p

In the case of the problem under consideration, the first condition corresponds to the

requirement that the system be stable with respect to small modulations of the proton

density, and the second is a requirement for simultaneous modulations of proton and

neutron densities. The linal condition involves modulation of all three densities.

For all of the nuclear interactions we have employed, the diagonal terms of the

matrix are positive. The most stringent condition for stability is then the requirement

that the determinant of the whole matrix be positive, since the determinant of the 2 × 2

neutron-proton part of the matrix is always greater than the determinant of the whole
matrix.

The condition that the determinant be positive may be written as

u( q) = _ ('gllp -r- Dppq _ + q" ] O#n/r_nn + Dnnq 2
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(4 e2/q )
> 0. (4)

O_e/One 4- Oeeq 2 4- 4_e2/q 2

In this form, t_(q) is the coefficient of (¢_np(q)) 2 in (2), and represents the tendency

to stability of the protons: the terms in the first bracket are the nuclear bulk, density

gradient, and Coulomb contributions to the direct interaction of the proton modulations.

The second and third terms are the induced effects due to the interactions of the proton

modulations with those of the neutrons and the electrons, respectively. Apwoximations

to these latter terms obtained by neglecting Dee and all but the lowest powers of Onn

and Dnp bring these terms into the form discussed by BBP [4]:

4rre 2
t_(q) _ co 4- flq2 4- __ (5)

q2 4- k 2 'TF

I _0 --
(eu./e,,°)

cgttp fl_n/ flnn

where

,/3= Dpp + 2Dnp( + Dnn( 2,

\ anp J _,,,_'

a#p/ann ( 7 )
(- a#, / ann '

k_,v 47re 2 4o_ 2 JI3- - --(3_ he) (8)

The quantity ( is the amplitude of the neutron modulation relative to that of the proton,

and kxv turns out to be the inverse of the Thomas-Fermi screening length of the elec-

trons. In this form the gradient and Coulomb effects clearly make positive contributions

to t,(q), thus tending towards stability. There is a minimum value t_(Q) at q = Q that

marks the least stable modulation:

IT) ./2
Q2 = - k_.F, t,(Q) = c0 + 2(4rre2fl)I/2 _ flk2TF" (9)

In situations where k_,v is small compared with q2, as is the case here, the gradient

and the Coulomb terms clearly make approximately equal contributions to v(Q). This

amplilies by a factor 2 the contribution the gradient terms make towards stability. For

the uniform fluid to be stable with respect to coagulation of the protons, t_(Q) must

be positive. The density at which this condition fails, n(Q), marks the lowest nucleon

density at which uniform matter is stable to small modulations of this kind.

While less revealing, the numerical minimization of the unapproximated determinant

(4) is simple, and one may thus find the wavenumber for least stability without ap-

proximations. Since for the Skyrme and Skyrme-like interactions we shall examine the

derivative terms, which are not the first terms of an expansion, but are a truncation

that represents all of the tinitc-rangc effects, it is useful to determine the size of the

differcncc between the two procedures (4) and (5). As wc shall show, howevcr, it is

very small.
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3. Stability results

Some of the ingrcdients in the instability analysis of the previous section are shown

as a function of baryon density in Fig. 1. The matter whose properties are given consists

of neutrons, protons and electrons, and is in the uniform phase in equilibrium with

respect to beta decays of the form p + e- _ n + Pe and n_ p + e- + 17e. At zero

temperature the condition is /zn = /zp +/Ze, if one assumes that the neutrinos escape

freely from the star, so that their chemical potentials may be set equal to zero. The

particular interaction used, called FPS21, has the property that it is a good fit to both

the nuclear and neutron-matter calculations of Friedman and Pandharipande [13]. The

curve u0 represents static stability according to (6), while the curves labelled Umin

include the contributions from gradient and Coulomb effects, calculated either with the

exact minimization of Eq. (4) or the approximate results of Eq. (5). The quantities

Q2, the values of q2 that minimize u(q) by the two methods, are also shown. One

sees from the densities at which these three u curves cross the axis that gradient and

Coulomb effects promote stability down to lower densities, and that the results of the

BBP approximation and the exact diagonalization are virtually indistinguishable.

One deduces from Fig. 1 that with the FPS21 nuclear interaction, uniform beta-stable

e£

>

>

-1000
0.08 0.09 0.10 0.11 0.12

n (fro "3)

Fig. I. The contributions to the stability criteria (4) and (5) (see text) as functions of density, for uniform

matter in beta equilibrium. The interaction used here is FPS21 (see text).
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matter is stable against the particular form of density modulation assumed in Section 2

down to a baryon density -_ 0.10 fm -3. This is an approximation to the density that

marks the transition between matter in the crust of a neutron star and the uniform matter

interior to it. The important questions that this result raises are: does the transition

density depend on the nuclear interaction used? How is the transition density related

to other nuclear properties? What is a "best guess" as to the value of this transition

density?

4. Interactions

The four different interactions that have been used to explore the crust phase boundary

at the level needed to distinguish phenomena such as non-spherical nuclei are all based

on the Skyrme interaction (see Table I). Before comparing their instability properties,

we make some observations on the properties and limitations of this type of inter-

action, to motivate the generalized form we suggest, and to pinpoint further possible

improvements. The relevant algebra for Skyrme interactions is given in the appendix.

4.1. Skyrme interactions

The essential simplifying property of a Skyrme interaction is that it has zero range.

In momentum space, the two-nucleon t-matrix that generates the interaction is assumed

to be of the general form

t( k, k t) = to + ½tl (k 2 + k/2) + t2k • k _+ t3n 2+_, (10)

Here k and k _ are the initial and final relative momenta of a colliding pair of nucleons,

and the tl and t2 terms containing them are the first terms in a Taylor expansion for

finite-range effects. With the assumption that the coefficients ti are constant, this t-

matrix generates in a well-known way [14] a nuclear hamiltonian in which the terms

of (10) contribute simple dependences on the density n and a linear dependence on the

kinetic density 7-: ton 2, tt.2nT- and t3 n2+a. The momentum-dependent terms generate also

Table I

Densities of phase transitions, and pressure at instability

Interaction n(Q) a np_j,ap b nl_2 ¢ p[n(Q)l d
(fro -3 ) (fm-") (fro -a) (MeV.fm -3)

SkM 0.0737 0.0769 0.0843 0,379

Skyrme I _ 0.0995 0.1066 0.1085 0.456

FPS 0.0957 0.1031 0.1056 0.373

FPS21 0.0983 0.1040 0.1081 0.500

a Onset of instability against proton clustering.

h Density of proton drip in the two-fluid phase,

Phase transition from the two-fluid to the one-fluid phase.

d Pressure at the onset of instability against proton clustering.
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Table 2

Parameter values of the Skyrme interactions

Model t_ .r_ t I t2 t3 x3 ot

(McV.fm _ ) (MeV,fm 5 ) (MeV.fm -s) (McV.fln e')

I' 1057,3 0.2885 235.9 100. 14463.5 0.2257 I

SkM 1191 2645.0 0.09 385. -120. 15595. 0 !
6

a quadratic dependence on the gradient of the density. It is these gradient contributions,

plus the terms from the extended Thomas-Fermi expansion of the 7n, rp operators [151,

that provide the curvature terms Dii of Section 2.

In the detailed forms of the hamiltonians given in the appendix, the parameters of

the t-matrix (10) are supplemented by spin-exchange terms, the only type of exchange

contribution permitted for a zero-range interaction. Those lot the potential energy, x0 and

x3, allow adjustment of the charge-symmetry properties. The kinetic-energy exchange

parameters Xl and x2 have the effect of decoupling to some degree the effective mass

contributions to the kinetic energy from the gradient contributions to the potential energy.

If .vl and x2 are assumed to be zero, those two parts of the nuclear effective hamiltonian

are uniquely related to each other. The effective interaction (10) or its more general

form (A.I) produces hamiltonians that are remarkably economical parametrizations of

properties of ordinary nuctci. The interactions Skyrme I j and SkM are just two of many

examples that exist in the literature. Skyrme 1j and SkM each have spin exchange only

in the potential energy: Xl and x2 are zero for both of them.

In order to extrapolate such models, which handle nuclei with proton fractions Xp >_

0.4, to neutron-star matter, for which Xp <_ 0. I, one uses the only intormation available

on neutron matter, namely ab initio microscopic calculations of uniform matter from

two-nucleon scattering data. Applied to unifbrm neutron matter, assumed to be at zero

temperature, the ti terms of Skyrme interactions contribute to the energy per baryon

density dependences t_;z, tl.2n 5/3 and t3n I+% With so few parameters, and such restricted

density dependence, it is not always possible to match the "observed" neutron-matter

properties closely. The Skyrme 1; and SkM interactions are of this type, and each

was matched in some way to the microscopic zero-temperature calculations of Siemens

and Pandharipandc 116]. Skyrme I r is based on the early lit to closed-shell nuclei by

Vautherin and Brink [ 14] and, after being modified [ 17] to lit neutron matter [ 161, it

has bccn used in dense-matter explorations by Lattimer et al. [ 18 I. SkM was developed

by Krivinc, Treiner and Bohigas [19], and used in linite-lemperature astrophysical

applications by Bonchc and Vautherin [20] and by Lassault ct al. 1211. Its predictions

fbr neutron-star crusts wcrc studied in Ref. [ 10]. For complctcness, the parameter values

for these interactions are given in Table 2.

4.2. Goteralized Skyrme interactions

In the generalized type of Skyrme interaction to which FPS21 belongs, the t-matrix
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Table 3

Fil 1o nuclear and neulron matter

tt pn

1 339 MeV _

2 - 1054 MeV.fin _

3 89.8 MeV.fiw s

4 0.457 fm _

5 -59.[) MeV.fin 5

6 0.284 fin _

7 -543 MeV.fin _

8 2316 MeV.fm _

9 6.50 fin a

I[) 1.78 McV

I I 52.0 McV.fin 3

12 -5.50 MeV

13 197 MeV.fin _

683

cocflicients in (10) are taken to be ['unctions of density, as detailed in the appendix.

They are to be fitted to the "observed" (in fact computed) temperature- and density-

depcndent energies per baryon of neutron and nuclear matter, in this case the more recent,

finite-temperature microscopic calculations of Friedman and Pandharipande [ 13 ]. The

tlcxibility associated with x0 and x3 is subsumed into the more general parametrization

used for the potential terms. The two distinct functions used in the kinetic energies

correspond to the two parameters tj and t2 of (10), so that implicitly we assume that xl

and x2 are zero. Thus the gradient terms in the potential energy are uniquely determined

by the effective-mass terms, which are obtained by fitting the temperature dependence

of the nuclear- and neutron-matter energies. The values of the 13 parameters involved

are given in Table 3. Some explorations have been made of the effect of non-zero values

for xl and x2, but the possibility needs further study.

An interaction of this type, FPS [22], was employed recently by Lorenz et al. [ 10]

to explore the properties of solid neutron-star crusts. As will be seen, the FPS model

is not a very close fit to the neutron-matter energies, although it was intended to be!

The required modification in nuclear-matter properties, noted in Ref. [22], spoiled the

original lit to neutron matter. The interaction FPS21 introduced in this work corrects

that problem. The interaction FPS and the results obtained with it are still internally

consistent, however, and here it provides another datum in our comparison of properties
of interactions.

The terms associated with Pl0 and pI2 in (A.3) of the appendix are needed to

approximate the low-density behavior obtained in the calculations of Ref. [ 13 ]. Because

of the basic role played by two-body correlations the nuclear-matter results of Ref. [ 13 ]

correspond at low density to a gas of deuterons, and the proton and neutron chemical

potentials obtained are in the limit of zero density finite and negative. Thai result arises

from the pl0 term, whose contribution to H is x n. To avoid this behavior, which is

inappropriate for a nuclear hamihonian for neutrons and protons, thai term is replaced by
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Table 4

Parameter values in the generalized Skyrme interactions

Model Pm Ptl P12 PI_

(MeV) (MeV.fm 3) (MeV) ( IMeV.fm3)

Fit to FP [ 131 1.78 52.0 -5.50 -197

FPS [22] 0 63.125 -5.50 -197
FPS21 0 63.125 1.62 241.5

plo/ns, and amalgamated into P11. For neutron matter, however, since there is no bound

nn system, the behavior obtained by Ref. [13] should describe correctly the interacting

system. The values of p_2 and Pl3 are therefore adjusted to compensate for setting Pl0 to

zero and to restore the original fit to neutron matter. To make clear what is being used,

we give in Table 4 the values of the relevant parameters involved in the original fit, in

the intermediate lit FPS, and in the correct lit FPS21. We return in a later section to a

possible physical consequence of the Pl2 term in the FPS21 interaction. The interaction

FPS describes well the ground-state energies of spherical isolated nuclei [10], and

the neutron-matter adjustment involved in going to FPS21 does not affect that feature

markedly. (For 2°spb, the energy per baryon changes by _ 30 keV [23].)

The basic Skyrme assumption, that the dynamic properties are determined by a two-

body interaction, Eq. (I0), results in a solely quadratic dependence on the nuclear

charge asymmetry (n,-np)/n of the strong-interaction part of the nuclear hamiltonian.

For definiteness, we assumed that the generalized Skyrme interactions behaved in the

same way. Apart from simplicity, a partial justification for that assumption is provided by

the direct calculations, by Lagaris and Pandharipande [24] of the properties of charge-

asymmetric nuclear matter. They find that at a density of n = 0.1589 fm -3 the quadratic

symmetry coefficient of nuclear matter is E:sy m = 29.96 MeV. The value obtained at that

density with FPS21, as a result of the assumption of quadratic dependence, is 29.50 MeV,

which agrees quite well with the direct calculation. The estimate in Ref. [ 13] of the

quartic term in the charge asymmetry gives a contribution to the neutron-matter energy

per baryon at that density of < 1 MeV. (This is an upper limit.) This quantity translates,

however, into a contribution to/Zp in neutron matter of < 8 MeV, a < 7% modification

in its value at that density. This is rather larger than is comfortable. Since #p and

its derivatives are quantities needed for the instability calculation, it would be very

reassuring to have a direct calculation of ,up for neutron matter, as a different constraint

on the charge symmetry.

5. Stability of different interactions

We show in Fig. 2 the static t,0, (6), and the exact value of t'min from (4), for all four

of the nuclear interactions that we consider. Listed in Table 1 are the densities n(Q) at

which Umin is zero, and the pressures of the matter there. It is evident from Fig. 2 that

not all of these interactions agree on the stability properties and density of the phase
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Fig. 2. The stability energy t,(Q), (4), and the static approximation to it, t,0, (6), as functions of density,

for uniform matter in beta equilibrium, for interactions of the Skyrme type (see text). The matter is stable

against proton clumping so long as l,(Q) > 0.

transition to inhomogeneous matter. Since they each give reasonable accounts of nuclear

matter and terrestrial nuclei, it is interesting to find what properties of the interacting np

system they disagree on. An obvious candidate is neutron matter.
Basic to the interactions is the energy functional. Plotted in Fig. 3 as "data points"

is the energy per baryon of neutron matter as given by the microscopic calculations

used to locate the neutron-matter aspects of the four effective interactions. That of

Siemens and Pandharipande [ 16] used the Reid potential, while that of Friedman and

Pandharipande [ 13 ] used the V14 two-body interaction plus a three-nucleon interaction.

Of the two calculations, Ref. [13] was made ten years later than Ref. [16], and

superseded it both in two-nucleon input and in many-body technique.

Shown in Fig. 3 are the neutron-matter energies given by the four effective interactions

we arc comparing. There is clearly a progression in the quality of the agreement with

the computed points of Refs. [ 13,16], but it is not obvious from Fig. 3 why the SkM

stability prediction shown in Fig. 2 should be so different from those of Skyrme 1',

FPS and FPS21, and why those three should have such similar stability properties. We

recall that the instability criteria (4) and (5) involve not the energy of the matter, but

derivatives of it, in the form of chemical potentials, in fact their" density derivatives. We
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Fig. 3, The energy per baryon of uniform neutron matter as a function of density. The diamonds are the values

obtained by Friedman and Pandharipande 113 ], the "+" signs those of Siemens and Pandharipande 1161. The

interactions Skyrme I', SkM, FPS and FPS21 are described in the text.

examine in Fig. 4, therefore, the proton chemical potential in neutron-matter that comes

from the four interactions. Included also, as points on the graph, are numerical results

of Ref. [ 16]. One sccs that there is surprising unanimity among all of the interactions,

although they all give values somewhat lower than the point from Ref. [16] at n

0.093 fm -3. The neutron chemical potentials are shown in Fig. 5. Here there appears a

clear separation between SkM and the other three interactions. The value of/Zn for SkM

is somewhat diffcrent for most of the density range, and clearly the derivative fllZ,/cgn

is distinctly larger. Also, while the FPS21 curve departs consistently from those of FPS

and Skyrme I _ at densities _ 0. I fm -3, the slopes of those three curves are very similar.

These facts may explain the stability results of the four interactions. We must remember,

however, that the chemical potential derivatives that contribute to the static stability t_0,

(6), are to be evaluated tbr beta-stable matter, and not lbr pure neutron matter. In fact,

the derivative ,9#p/_gnp contains a term proportional to nff t/3, and is singular for pure
neutron matter.

The fact that the #,, behavior discriminates among the tbur interactions, whereas that

of #p does not, may be understood as follows: the energies of all four interactions

have been litted to nuclei along the stability line, and also, with varying precision, to
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Fig. 4. The proton chemical potential of uniform neutron mailer as a function of density. The "+" signs are

the vah.cs obtaincd by Siemens and Pandharipande [16]. The interactions Skyrmc 1/, SkM, FPS and FPS21

arc described in the text.

the neutron-matter energies. The interpolation in the coordinate tln-tl p between those

regions is quadratic in all cases. The quantity/,p is the slope of the parabola at np= 0,

which, as a simple calculation will show, is not sensitive to the exact location of the

bottom or edge of the parabola. (The fact that all curves are signiticantly lower than the

datum of Ref. [ 16] at n _ 0.093 fm -_ is not a serious discrepancy, since by this density

the energy per baryon from that reference, shown in Fig. 3, is also suspiciously high.)

On the other hand, #, is the slope, in the n. coordinate, of the direct lit of energies to

neutron matter, and amplifies any imperfections in the tit. We can verify this distinction

by examining the pressure p, as shown in Fig. 6. This is not really an independent

test, since lbr neutron matter p = nn#, - E, but it is useful since Refs. [ 13,16] give

results also for the pressure. Included in Fig. 6 are their values, and curves from the

four interactions 2 . The grouping of the curves in Fig. 6, and its clear relationship to

the grouping in the stability results of Fig. 2, is evident. The SkM interaction has a

:Thc inleraction FPS21 was lillcd to only the energy per baryon calcul:ttcd in Rcf. [ 13 I, and not to the

pl'csstlrc '_alues also obtained there. Any lack of agreement with file Friedman Pandharipandc pressure rcsulls

IS {I I/leaStllC oJ Ihc crroIS ill lhc choice of ftlllCllOllS ,:lnd paralllelcrs in Ihc fittillg to their nunlericaJ 'values of

the energy pcr baryon. The tit was made Io the whole density range quoted by Ref. 113]. n, _ 1).83 fro-_.
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Fig. 5. The neutron chemical potcntial of unifbrm neutron matter as a function of density. The interactions
Skyrmc I _, SkM, FPS and FPS21 are described in the text.

much higher pressure ibr neutron matter in the density region n ,-_ 0.08 I'm -3 J5tls.

We conclude that to reproduce the thermodynamic properties of a given set of "neutron-

matter data" that are important for the phase boundary, the energy functional must be

fitted rather closely, in ordcr to reproduce correctly the density derivatives of it, the

quantities on which the stability depends. We return to the qucstion of the relative

immutability of #p, which may be due in part to the choice of isospin dependence in

the effective interactions, in the discussion section.

6. Comparison with a more complete model of the solid phase

The phase transition bctwcen unilorm beta-stable matter and a solid phase composed

cithcr of nuclci or o1 ncutron-bubbles requires some model dcscription of the solid.

Thesc models usually contain further quantitics such as surface energies, etc., that arc

not easy to calculate. The stability analysis that wc have given, based on the uniform

phase, is theoretically simpler and more accessible. A comparison between the two

treatments provides a useful check on our methods, nonetheless.

The interaction we have studied most extensively up to now is FPS. Although we
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Fig. 6. The pressure of uniform neutron matter as a function of density. The diamonds are the values

oblained by Friedman and Pandharipande [ 13] the "+" signs those of Siemens and Pandharipande [ 16]. The

interaclions Skyrme 1', SkM, FPS and FPS21 are described in the text.

believe that FPS21 is the preferable interaction, since it is a much closer fit to neutron

matter [131, the only interaction for which all of the ingredients for the full description

of the solid are available for comparison is FPS. The results of a full compressible

liquid drip treatment for that interaction are as follows. The energies per unit volume of

the spherical bubbles phase and of the uniform phase for FPS are equal at a density of

,_ = 0.09607 fm -3. The first-order transition between these two phases, calculated by

assuming equality of pressures and neutron chemical potentials, extends from a density

nl = 0.09473 fm -3 to a density n2 = 0.09620 fm -3. The instability density for tmiform

matter for this interaction is n(Q) = 0.09565 fm -3. As discussed in the introduction,

n(Q), the density phase transition would have if it were of second order, is less than

n2, lhe upper edge of the lirst-order transition density range.

It is thus clear that to an accuracy < 0.001 I'm -3, the instability density ,(Q) can

be assumed to represent the maximum densily of the solid material in the neutron-star

crust.
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7. The bulk equilibrium approximation

We now discuss other related densities that may be even simpler to calculate.

A simplflication of the solid phase is obtained by neglecting the Coulomb and surface

(i.e. density gradient) contributions to the energy. One can then calculate the properties

of a phase with two uniform components, one a "nuclear fluid" consisting of neutrons

and protons, the other consisting of neutrons, all in thermodynamic and beta equilibrium.

Another approximation to the boundary between solid and liquid neutron-star phases is

then given by the phase transition between this two-fluid phase and the uniform one-

fluid phase we have discussed in the previous sections. The properties of the two-ltuid

phase may be exhibited on the "map of Africa" shown in Fig. 7. The interaction used

there is FPS21. Isobars of nuclear pressure are plotted on the space of neutron-proton

chemical potentials versus proton lYaction. The vertical and horizontal dotted lines join

points that have equal neutron chemical potentials (and pressures, of course), and

indicate the proton chemical potentials of the two fluids. One case chosen, with pressure

0.005 MeV.fin -3, is not far from ncutron drip, and the proton chcmical potentials for

this case are far from equality, a necessary condition for the protons to be contined to
the "nuclear" fluid.

Up to now we have tacitly assumed that the bulk equilibrium is between one phase

with non-zero proton concentration, and pure neutron matter. However, it could happen

that the proton chemical potential in the pure neutron phase fell below that in the

phase with a non-zero proton concentration. It would then be energetically faw)rable for

some protons to migrate from the proton-rich phase to the initially pure neutron phase.

This corresponds to "proton drip", by analogy with the situation for neutrons at lower

densities, when the most energetic occupied neutron orbitals become continuum states,

rather than bound ones. We denote this density by np drip. At densities somewhat above

that for the proton drip, matter consists of two phases with different non-zero proton

concentrations in equilibrium.

With further increase in density, the energy per particle of the matter will eventually

rise to that of" the uniform phase. This will generally occur by one of the two phases in

the two-phase equilibrium growing at the expense of the other one until it occupies all of

space. Another possibility is that the proportions of two phases remain non-zero, but the

two phases in equilibrium become increasingly similar, and eventually indistinguishable.

This latter possibility will be realized only for very specitic conditions, such as a

particular net proton fraction. We denote the density at which the two-phase equilibrium

ceases to have u lower energy per particle than the uniform phase by nl_2. The values

of Ilp drip and the2 for the interactions we examine are listed in Table 1.

To be concrete, consider the situation at a pressure of 0.503 MeV.fm 3, shown as

a fragment of an isobar in the main part of Fig. 7, and also in the inset. One can

see that it is possible to have equal pressures, neutron chemical potentials and proton

chemical potentials for a _ 5% solution of protons in neumms, and a vanishingly small

solution of protons in neutrons. For a pressure of 0.538 MeV.lin 3 shown also in the

inset on Fig. 7, there is coexistence between a _ 45}: solution of protons, and one with
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Fig. 7. Nuclear pressure isobars on a pn chemical potential versus proton-fraction plot. The interaction used ts

FPS21 (see text). The pressure values listed are in MeV-fin -3. The vertical and horizontal lines on Ihc main

ligurc locate lhe pure neutron and nuclear fluid phases thai are in thermodynamic equilibriunl. The isobars

revolved are F = 0.005 MeV.fin -3 (just beyond neutron drip) and p = 0.503 MeV.fm -_ (the onset of proton

drip). Inset are enlarged views of #p for the laller case (upper curve), and for p = 0.538 MeVJ'm -3, the

limit of two-fluid equilibrium where both fluids have non-zero proton fractions (lower curve).

(L2%. Some properties of the matter as a function of density are shown in Fig. 8.

The fraction X,,,_, of matter in the "nuclear" component climbs steadily with density, and

has reached 0.71 at np drip. The proton fraction of this component, xm,_,, falls sleadily,

while thai of the neutron component, t'drip, is of course zero. As the density increases

beyond nv dnp, the properties of the "nuclear" component continue changing as belbrc,
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Fig. 8. Some properties of the two-fluid approximation to nuclear matter, as functions of density, and its

connection to the interior nuclear liquid. For the two-fluid ease they arc Ihc charge tractions Xn_ of the

"nuclear" eomponenl, and xo,w of thc nominally neutron component, the net charge fraction Yc, and the mass

fraction Xnuc in the nuclcar component. At the right side the matter becomes one uniform nuclear fluid, which

has Xm_ = I and proton fi'action x. The densities n(Q), nl I'o = 0 J, the protml-drip density np-0_ip and the

phase-transition density n_--2 are discussed in the text.

but Xdrip now becomes non-zero. At a density of nl_2, the phase transition density,

Xm, c, achieves the value unity, the "drip" component has disappeared, and the nuclear

component becomes the one-uniform-fluid phase of the neutron-star interior. Over this

small density range, the dripped proton fraction increases as the density increases, just

as it does with neutron drip in nuclei at much lower densities, but the actual fraction of

matter in that component decreases, going to zero at the phase transition.

So far as Fig. 7 is concerned, the mechanism is as follows. As is seen most clearly

in thc inset to Fig. 7, /Zp(X,p) does not approach the value x = 0 smoothly, but has a

cusp there. This behavior is duc to the proton kinetic energy contribution to #p, which

is proportional to x 2/3. If the pressure is increased slightly from the proton-drip value,

thc #p isobar is lowered at very small x, and phase equilibrium may be maintained

by having a linite, but small, proton concentration in the (nominally) neutron-lluid

part of the two-fluid system. The lower curve of the inset to Fig. 7 corresponds to the

phase transition to uniform matter. The possibility of the further rise of #p provides

a tiny region of metastability of thc two-fluid phase above this transition density. The
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corresponding metastability of the one-fluid phase at densities below nj_2 is actually

bounded by the instability density n(Q) discussed earlier. Within the limitations of the

model we are using in this section, however, with no gradient or Coulomb contributions,

that bound on the density would become n[u0 = 0] = 0.1055 fm -3, as given by Eq. (6).

Both density limits are shown in Fig. 8.

To summarize, the density tlp_drip is not an instability, but signals the onset of a

modified two-fluid phase. It occurs lbr all four of the effective interactions we have

studied, but its occurrence requires a rather intricate coupling between the behavior of

#p and #,, at low proton fraction, so that it is not clear that it occurs for all effective

interactions. Either np_dri p, if it occurs, or nl_2 can be used as an indicator of the

proximity of the solid-to-liquid transition.

The actual phase boundary between the solid phase and the uniform phase is modified

by the Coulomb and surface contributions that a more complete calculation of the solid

phase [ 10] gives. As shown in the previous section, the density n(Q), which contains

gradient and Coulomb contributions, is a good approximation to the phasc boundary. The

densities discussed in this section, especially nl_2, provide a rather simple alternative

way to gauge the properties of any given interaction. As discussed above, nl_2 must

always be greater than rip-drip, a condition that Table 1 confirms. Since it lacks gradient

and Coulomb terms, which constitute positive contributions to the energy, it must be an

upper limit to the phase boundary.

The densities n(Q) and np-arip, which are properties of different phases of the matter,

may occur in either order, although in the cases we document in Table 1 n(Q) is always

the smaller of the two. An interesting question that these considerations raise is whether

the detailed calculations for inhomogeneous systems give a higher transition density if

the possibility of proton drip is included. That question is deferred for future work.

8. Discussion

We have examined the stability against inhomogeneity of beta-stable matter, as an

indicator of the solid-to-liquid phase transition that occurs at the inner boundary of

the solid crust of a neutron star. In particular, we have found that the interactions

that possess neutron-matter properties in agreement with the microscopic calculations of

Pandharipande and coworkers [ 13,16] also give relatively high densities (n _ O. 1 fm -3 )

for the stability limit of the high-density, uniform phase. Such a high instability limit

allows a larger density range for the various non-spherical solid phases, with important

consequences for crustal properties of neutron stars. We now examine some more recent

microscopic calculations, to explore the extent of the agreement with those we have
relied on.
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Fig. 9. The energy per baryon of uniform nculron matter as a function of density, a comparison with

other microscopic calculations and various other effective interactions. Results from microscopic calculations

are represented with data points: the diamonds are the values obtained using the V14 polential plus a

three-nucleon interaction, from Ref. [ 13], the "+" signs using the Reid potential, from Ref. [ 16]. The

triangles are non-relativistic calculations using the Bonn-A potential, from Ref. ]26]. The squares and crosses

are relativistic calculations using the Bonn-A potential, from Refit. [25,26], the two sets of values being too

close to distinguish in the figure for most of the density range. The full curves ct)me from effective interactions

mentioned in the discussion section: the curve labelled ( I ) is from Ref. [27 ]; (2) and (3) are from Ref. [ 28 ],

( 21 having only linear terms in the _r-lield, ( 3 ) having non-linear terms; (4) is from Ref. [ 30 ] ; (5) is based

on Ref. ]31 ], using the parameter set corresponding to a nuclear incompressibilily of K = 200 MeV; (6) is

SkM*, a modified version [ 29 ] of SkM.

8.1. Observations

We recall that Refl [ 13] uses the V14 two-body potential plus a three-nucleon inter-

action, and Ref. [161 uses the Reid potential. Recent calculations by Li et al. [251 and

by Bao et al. [26] use the Bonn-A potential and relativistic Dirac-Brueckner many-body
theory. The latter reference [26] includes also non-relativistic Brueckner-Hartree-Fock

treatments of that potential. At the few densities that fall in our range of interest, their

results arc in excellent agreement with those of Ref. [ 13], as is shown in Fig. 9. It is

tempting to believe that at densities below 0.1 I"111-3 the energy per baryon of neutron

matter calculated ab initio constitutes well-determined "data". For the convenience of

other workers, numcrical valucs lor the points plotted in Fig. 9 are given in Table 5.
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Table 5

Numerical values used in Fig. 9 of the energy per baryon £" of neulron

matter, and olher quantities when given, as a function of density

n (fro -_) £ (MeV) #p (MeV) p (MeV.t'm -a)

0.000912 " 0.78

0,00422 ;' 1.86

0.01425 _ 3.7 I

0.03377 a 5.93

0.0927 a 10.46

(I.1659 a 16.

0.004222 b 2.057

0.007295 b 2.747

0.01153 h 3.503

0.01729 h 4.322

0.02462 b 5.177

0.03377 h 6.027

0.04495 h 6.873

0.05836 h 7,744

0.07420 h 8.699

0.09267 b 9,822

0.1140 b I 1.22

0,1383 b 13.01

O. 1659 b I 5.26

0.050 c 7.164

0.10l c 10.384

0.149 c 13.209

0.169 c [4.432

0.10 d 10.14

0.13 d 12.62

0.15 d 14.56

0.16 d 15.37

0.10 c 10.15

0.13 c 12.62

0.15 c 14,55

0.16 c 15.54

-3.19

- 9.09

- 19.23

-33.83

64.3

-88.4

0.(104517

001065

0.02115

0.03871

0.06331

0.09506

(t.1402

0.2101

0.3287

0.5375

0.8977

1.473

2.408

_' Frmn Siemens and Pandharipande, Ref. 1161.

b From Friedman and Pandharipande, Ref. [ 131.

c Non-relalivistic, from Bao et al., Ref. 1261.

d Relalivislic, fi'om Bao et al., Ref. 1261.

From Li et al., Ref. 1251.
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Nuclear theories intended for the dense neutron-star interior may not be able to give

a good description of the crust region, and perhaps that deficiency is not relevant to

their purposc. On the other hand, the fitting of such models to neutron-matter "data"

n-my provide a useful constraint on parameters of the model. To illustrate the extent of

possible departures from the microscopic "data" on neutron matter, we includc in Fig. 9

the energy per baryon, as a function o1" density, for some popular effective-interaction

models. The Walccka relativistic mcan-licld model, as prcscntcd by Scrot [27], and

labclled "1" in the ligurc, departs markedly from the "data" in the low-density regions,
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and even predicts a neutron-mailer bound state. In a more complex form more adaptable

to the isospin ilcxibility needed, two versions of this model described by Reinhard et

al. 1281 arc also illustrated in Fig. 9. One labelled "2" has a linear or-field, the other,

"3", a non-linear one. It should be emphasized that, so far as we know, no attempt has

been made to adjust these models to neutron-matter properties. It seems likely, front the

three RMF curves shown, that the more complex model possesses suflicient flexibility

lor a better tit to be achieved. The neutron-matter properties they predict at higher

dcnsities would clearly be much changed by such a modilication.

To continue the comparisons, we include in Fig. 9 some non-relativistic model results.

The curve labelled "6" is the Skyrme interaction SkM* now used in preference to SkM

by Bonche and coworkers 129] 3, which has slightly modilied values of tl and t2, and

its energy thus departs a little from that of SkM at the higher densities. The density for

instability against proton clumping, n(Q), is increased from that of SkM, illustrated in

Fig. 3, by only about 0.001 fm -3. It is thus unlikely that neutron-star results obtained

using SkM [ 10l will be significantly modified by the use of SkM*.

Some other non-relativistic models that have been used extensively for studying prop-

ertics of terrestrial nuclei, and whose predictions for neutron-star crusts would be in-

teresting to have, were the models suitably modified, are also shown in Fig. 9. The

model of Myers et al. [30], "4", uses a classical two-body interaction fitted exten-

sively to stability-line nuclei. The model of Fayans and co-workers [31 ], "5", treats in

mean-field approximation a finite-range effective interaction adjusted to match nuclear

ground-state and excited state properties. In each case there is considerable departure

of the predictions t¥om the neutron-matter "data", as is to be expecled with so large

an extrapolation in proton fraction from the valley of stability. With the interaction of

Ref. [ 311, for example, it is not difficult, by adjusting only two of the parameters of the

model [32] 4, to match the neutron "data" closely in the density range considered here.

Such a modification then necessitates readjustment of the fit to properties of nuclei, of

course. One may hope that fitting neutron-matter properties, given the large "lever arm"

in proton fraction that is involved, will also have a beneficial effect on the ability of

models to match properties of nuclei further from the stability line.

For the sake of brevity we have not included plots of pressure and chemical potentials

tbr these other interactions. In general, since those quantities involve derivatives of the

energy, the departures among the models that is seen, and the differences from a model

such as FPS21 that they show, are relatively larger than ['or the energy. In order that the

stability properties, which involve these derivative quanlitics, are well determined, it is

important to achieve a close tit to the energy as a function of density.

We Ihank Dr. E. Chabanat for providing us the parameter values of Skin*.
We Ihank Dr. Fayans for providing us with a program that applies lhat interaction Io uniform matter.
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8.2. Suggestions

To the extent that there exist microscopic calculations of neutron-matter properties

that are unanimous, it seems to us highly desirable that effective hamiltonians proposed

for the density range n _< ns, and even those intended for higher densities, should be

adjusted to lit closely those properties.

The crucial role that ab initio microscopic calculations play in this problem is clear.

The agreement between Refs. [13,16] on the neutron-matter energy per baryon, ob-

tained using different potentials and different many-body techniques, extends up to

nn _ 0.05 fm -3, and that between Refs. [ 13,25,26], again with different potentials and

different many-body techniques, improves the agreement to nn < 0.1 fin -3. It would be

invaluable for the proponents of other microscopic two-nucleon interactions to calculate

neutron-matter properties at densities < 0.1 fm -3, since these properties are a vital, but

experimentally inaccessible, input to the elucidation of neutron-star structure.

We hope to have made evident that other quantities besides the energy of neutron

matter are needed to substantiate or improve the assumptions implicit in most effective

interactions:

The instability analysis needs the proton chemical potential/.tp and its density deriva-

tives for beta-stable matter. (All other explorations of the crust phase boundary use

information equivalent to this.) Direct many-body calculations of #p for neutron matter,

a simpler task than for matter of arbitrary charge state, would provide a more accurate

value, and avoid reliance on the quadratic charge-symmetry expansion around nuclear

matter that effective interactions are forced to assume.

Crucial to the location of the instability density are the gradient terms in the effective

hamiltonian. The present work neglects possible spin-exchange contributions to the

t_ and t2 terms ot" the Skyrme t-matrix. The presence of such contributions would

modify the gradient terms, and thus the phase boundary. The possible presence of

spin exchange needs in microscopic calculations consideration of spin-non-saturated

systems, as can be seen from the last lines of Eq. (A.2). There may be alternative

approaches to obtaining these gradient terms, but information about them in some form

from microscopic calculations is very desirable.

8.3. Skyrme-like interactions and neutron potentials

We return to a point discussed in an earlier section concerning the behavior of the

generalized Skyrme interactions at low density 5. We show in Fig. 10 the behavior of

a quantity T(n) related to the potential-energy part of the energy per baryon e = E/n

tbr neutron matter:

,T(n) =- e
n 5 2m /

(11)

5 This section owes much to VR. Pandharipande. We hope to pursue its implications with him in the fulure.
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Fig, 10. The neutron potential energy-related quantity T(n), (11), as a function of neutron density. The

diamonds are the values obtained by Friedman and Pandharipande 1131 the "+" signs those of Siemens and

Pandharipande 1161 The interactions Skyrme 11, SkM, FPS and FPS21 are described in the text.

For the customary Skyrme interactions,

1
T(n) --+ _t0( I - x0). n --+ 0 (Skyrme). (12)

For Skyrme 1_ and SkM, that is the behavior exhibited; the linear rise in the lbrmer

case is due to its t3 term, since for it _ = I. The behavior of the other interactions is

directly traceable to their parameter values, which are given in the tables. On the other

hand, lot a dilute neutron gas with scattering length -lal, the behavior at low densities

given by many-body theory is (sec lbr example Ref. [33]

T(n)- /i27"rla] (1 6 )n_ _(il -21n2)kvlal+...

__ -2480 MoV • fro3( I - 0.525kFlal). (13)

where the numerical values result from taking ann scattering length lal = 19 fro. With

that value, the quantity kl<lalin the expansion of (13) is unity at a neutron-matter density

of nl,,r = 0.49 x 10 -5 I'm -3. This is too small a density for the behavior given by (13) to

be visible in Fig. 10, or to be an accurate approximation even at the lowest dcnsities used

in the ab initio calculations. But clearly the energies obtained by Rcfs. 116,13] exhibit
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the right tendency, in that T(n = 0) = -2480 MeV.fm 3, far below the values shown

in Fig. lO. The tigure shows that FPS21 qualitatively shares that property, although its

singular behavior at n,, = 0 would need slight moditication to match Eq. (13).

The rather large variations in behavior of the four effective interactions at very low

density is masked in the equation of state by the kinetic-energy contribution, so that

the presence of a term _x n in E is not the ingredient that determines the behavior
of neutron-star matter in the density range 0.05 fm -3 < n < 0.1 fm -3. (The fact

that FPS and Skyrme I' agree well with FPS21 so far as the instability criteria are

concerned is proof of this point.) But in the Hartree-Fock single-neutron potential,

such a term would contribute a constant, density-independent, attractive potential at very

low neutron density. The correct matching to the "data" of Refs. [13,16]) and to the

theory of Eq. (13) will cause the potential to eventually -* 0 at neutron densities

nM, of course. But such a contribution, which does not arise with the usual Skyrme

parametrizations (although it could be introduced), may have implications for neutron

"haloes" in very neutron-rich nuclei.

9. Conclusion

Earlier results on the density of the solid-liquid phase boundary in dense neutron-star

matter ranged from 0.03 fm -3 of Refs. [2,3] to 0.17 fm -3 of Ref. [4]. The study

that fitted neutron matter to what we have used as one of our standards [ 16 ] Ref. [ 5 ],

obtained a density of 0.09 fin -3. That already was an indication that the properties

ascribed to neutron matter have an important effect on the density obtained for this

phase transition. The interaction FPS21 introduced in the present work is a close lit

to more recent neutron-matter energies [13] and, as shown in Table 1, it gives ['or

the density of the onset of proton clustering the value n(Q) _- 0.0983 fm 3. This we

estimate to be _< 0.001 fm -3 less than the density of the solid-liquid phase boundary.

The value of the transition densiO, determines the structure of the inner part of the crust:

it it is sufficiently high, it is possible for non-spherical phases, with rod- or plate-like

nuclei, to occur before the nuclei dissolve. This happens for the interactions FPS21,

FPS and Skyrme 1_. If it is relatively low, as occurs for SkM, then the matter makes

a direct transition from spherical nuclei to uniform nucleon fluid. The extent to which

the non-spherical phases occur will have important consequences, we believe, tk)r other

neutron-star properties that are determined in the crust.

For a thin crust, in the plane approximation, the crust mass, and thus the crust moment

of inertia, are proportional to the matter pressure at the phase transition. An explicit

formula for the crust mass in terms of this pressure, and the neutron-star mass and radius,

is given in Ref. [ 10]. For different interactions the pressure-density relationship may

vary, especially for interactions that do not lit the neutron-matter properties [ 13 ] closely.

For example, as is seen in Table 1, the transition pressure obtained for SkM is slightly

greater than that given by FPS, even though its transition density is considerably lower.

(For Re['. [5] the pressure we obtain at the density quoted above is 0.47 MeV.fin 3
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closer than any of our other results to that of FPS21.)

For the interaction FPS21, the value of the matter pressure at the crust boundary, given

in Table 1, is 0.500 MeV.fm -3. This is _ 30% greater than for FPS. If the value of the

moment of inertia of the crust relative to the total moment for the FPS interaction, taken

from Table l of Ref. [10l, is scaled according to the boundary pressures of FPS21

and FPS, one obtains the value Alc/l = 2.6%. (That quantity depends on the mass

and radius of the star, of course, and the values illustrated were for a neutron star of

mass 1.445M o and radius 10.79 km. The approximate dependence of the relative crust

moment of inertia on mass and radius is given in Ref. [34].) This value of Alc/l is,

perhaps lortuitously, identical with that obtained from the glitch analysis of Chau et

al. 135] Detailed calculations of the equation of state with the interaction FPS21, and

application to neutron-star models, have yet to be done, however.
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Appendix. Skyrme and Skyrme-like interactions

To illustrate comments made in the text, we include here all of the spin-exchange

terms in the t-matrix:

t(k, k') = ½tt (1 + xiP,,)(k 2 + k '2) + t2(l + xzP,_)k, k'

+to( 1 + xoP,_) + t3( I + x3P,,)n 2+", (A.1)

With the assumption that t; and xi are constant, this t-matrix produces a hamiltonian

density of the form

( h2 ,
H= \2m + _ [t,(I + _x,) + t_(l + ½._'2)] ,;

n _(_J )--_. [tI( / +X,) --t_ 2 +X2)]nn 7"n

[ f;2

+ [,,¢1+ + ½x:)],,
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1 , .I-2)1 )7-0-_[tl('_+xl)-t2(l + np

J ((1+ i )n2-(5 +xo)(n_++_to _xo ' _ ,,2pl)

÷It 3 ((I -I- 3sx3)n" -- (5 -f- x-_ n c'

_6 [3h(l + ½x,) - t2(1 + ½x2)] nV2n

+" [3t,_'+ x_)+ ,2(_+ x_)]_,,°v_,,.+,,pV%)
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(A.2)

where tin, np are neutron and proton densities, n = nn +rip, 7-nand 7-pare kinetic densities

and Jn and Jp are spin densities [ 14,36]. The interactions of this form that wc quote

in the text have the parameter values given in Table 2, and all have xl = x2 = 0.

In the generalized Skyrme interactions that have been constructed to give nuclear and

neutron matter that matches the numerical results of Ref. [ 13], the effective t-matrix

elements have a density dependence, so that the hamiltonian density for uniform matter

becomes

H=
2m + (p3n + p5nn) e -p4" 7-n + k,2m + (p3n + p5np) e -lu'' 7 0

[,,,e e"' + + e-''''''],,,
¼(nn--np)2 [p7e-P'n+ps(1-e-P6")+- (P12 +P13) e-(p'n'2]kn

--k Hgradiem. ( A.3 )

At a given density nn,p, the kinetic densities Tn,p depend on the temperature. The 7--

dependent terms are fitted to the finite-temperature energies of nuclear and neutron

mattcr, and then the potential-energy terms may be fitted by comparison with the zero-

temperature energies. The particular form of the density dependence of the potential

energy in (A.3) made the fitting to nuclear matter (nn = rip) and then to neutron

matter somewhat easier. The relationship (nn -np) 2 = 2(nn2 + @) - n2 makes clear the

connection between (A.2) and (A.3). The parameter values that achieve the fit to the

ab initio microscopic calculations of Ref. [ 13] are shown in Table 3.

For the gradient terms of the generalized Skyrme interaction it is convenient to adopt

a different notation. If the parameters in the t-matrix (A.I) become functions of the

total density n, then we define the combinations that occur in the kinetic part of the

hamiltonian as

79_(n)=Jt_(n)(l+½x_(n)), Q_(n)=¼t_(n)(_+x_(n)), i=1,2, (A.4)

so that the kinetic part of the hamiltonian has the form

)Hkin = _ 2ram + [7")1(n) +'P2(n)]n-- [_l(n) -- _2(n)]nt 7-t,

/=n,p

( A.5 )
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With the supplementary definitions

T_i;f(tl) = -hi/7"i(n') dn',

o

C.J. Pethick et al./Nuclear Physics A 584 (1995) 675-703

,j_i;f(n) = _/ Qi(n') dn',

o

(A.6)

the gradient contributions to the hamiltonian are

i ')
Hgradient = --_(27"1 + 'Pl:f -- "D2;f)nV'n + ½(QI + Q2)(nn_72nn +//p_72ttp)

I 1 OQ2 (n.Vnn + npVnp) • Vn.
_(QI Q2)([V/'ln]2q- [V/'Ip]2) -I- 2 tin

(A.7)

This expression reduces to that of Ref. [36] for the special case of at most linear

dependence on n of the parameters in (A.I). The restricted parametrization employed

in the body of this paper assumes that xl and x2 are zero, so that Qi i= _79i, and

791 = P5 ) 7'2 ( + P5 ) e-e4"(/p3 e-l,_,, I. = _p3 , (A.8)

in terms of the parameters used in (A.3).
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